以文本方式查看主题

-  中文XML论坛 - 专业的XML技术讨论区  (http://bbs.xml.org.cn/index.asp)
--  『 计算机考研交流 』   (http://bbs.xml.org.cn/list.asp?boardid=67)
----  [原创] 我的离散数学学习心得 (1)  -- 一类抽象代数题的解题思路  (http://bbs.xml.org.cn/dispbbs.asp?boardid=67&rootid=&id=33061)


--  作者:Logician
--  发布时间:5/25/2006 9:37:00 PM

--  [原创] 我的离散数学学习心得 (1)  -- 一类抽象代数题的解题思路

by Xiao Xinpan

    学习离散数学已经有一段时间了,书读了不少,题也做了一些。最近又常在群里和研友们讨论离散数学中的问题。所以对离散数学也有了一些心得和体会。在今后的一段时间里,我会不定期的写一些小的经验总结,以供后来人参考。:)
    因为是“心得体会”,所以多半是想到什么写什么,组织和条理方面可能会比较差。还望各位看官多多包涵。;)

    这次我们来讨论一类代数问题的解题思路。

    问题:设R为含幺环,求证:对任意a,b∈R,若1-ab可逆,则1-ba也可逆。

    分析:
    我们知道,证明问题的方法大致可以分为两类:构造性证明和存在性证明。前者要求给出一个切实的方法,找出符合命题要求的元素(在这道题中,就是找到1-ba的逆元)。后者则只证明这样的元素必然存在,但并不给出切实的寻找方法。反证法是存在性证明的基本方法。
    
    无论打算采用是哪种证明方法,确认一下我们可以使用的前提条件总是必要的。
    就这道题而言,我们可以使用这些前提:
    1、R是含幺环。这就意味着R对加法构成Abel群(从而我们可以自由地使用加法交换律、加法消去律、加法逆元等),R对乘法构成独异点(从而可以使用乘法单位元1),当然还有乘法对加法的分配律。
    2、1-ab是可逆的,这就是说,存在c∈R,使得c(1-ab)=(1-ab)c=1。移项后得到:cab=abc=c-1。

    需要注意的是:
    1、在题设中没有假设R的可换性(事实上,如果R可换的话,整个问题就没有任何难度了),也没有假设a、b是可逆的。所以,在解题时,不能使用乘法交换律,也不能随便使用a、b的逆元(除非已经证明了它们的存在性)。
    2、如果没有1-ab可逆这个条件,肯定是推不出1-ba可逆的(我们在环中可以找到太多的反例)。所以,cab=abc=c-1将是解题的关键。观察这个式子,我们注意到,它提供了在c的参与下,移动和消去ab的方法。

    我们的目的是,证明存在这样的一个元素d∈R,满足(1-ba)d=d(1-ba)=1。
    
    初看到这道题,我们并不知道使用构造性证明容易还是使用反证法容易。
    不过推理一下我们可以发现,如果要使用反证法的话,我们需要反设1-ba不存在乘法逆元,然后由此推出1-ab也不可能有逆元(或者推出R不是含幺环)。
    但反设1-ba不存在乘法逆元后,我们到底能推出哪些结论来呢?似乎很少。我们甚至连“对任意x∈R,必有x(1-ba)≠1”这样简单的情况都难以证明(因为我们只假设了1-ba没有“乘法逆元”,并不能由此推出1-ba没有“乘法左逆元”)。
    
    另一方面,利用等式cab=abc=c-1直接构造出一个1-ba的逆元应该一个比较有希望的方法。
    这时,我们可以“取巧”了。注意到:
    1、如果我们相信题目给的命题没有错的话,我们只要找到1-ba的左逆元(或者右逆元)就基本完成任务了(虽然最终书写证明时,我们需要证明我们找到的元素既是左逆元又是右逆元)。因为如果一个元素的左右逆元都存在的话,它的左右逆元是唯一且相等的(所以,1-ba确实可逆,而我们又找到了它的一个左逆元x,那么这个x自然也是1-ba的右逆元)。
    2、不要指望证明c本身也是1-ba的逆元。因为假如是这样的话,(1-ab)和(1-bc)就都是c的逆元,由逆元的唯一性可知,1-ab=1-ba,利用消去律,我们可以得到ab=ba。这就说,在这个环里,只要1-ab有逆元,a和b就是可换的。这个符合“含幺环R”的一般情况吗?显然不符合。比如,由所有实矩阵对矩阵加法和矩阵乘法组成的环,它是含幺环。但只要|a|·|b|≠1,1-ab就可逆,但这样的矩阵都可换吗?显然不是的。这就说明,即使1-ab的逆元c存在,1-ba的逆元(如果存在的话)也未必是c。
    3、我们前面看到,在这道题中,c的存在性是1-ba可逆的一个不可缺少的条件,但c本身并不一定就是1-ba的逆元(仅当ab=ba时,c是1-ba的逆元)。那么,1-ba的逆元应该是一个与c有某种关系的元素。
    
    根据这些线索,我们来寻找1-ba的乘法逆元(不妨先寻找左逆元)。
    
    前面已经提到,cab=abc=c-1应该是解题的一个关键。那么,如果要使用它,就得用一个式子(不妨记为X)与(1-ba)相乘,使得它们的乘积中出现包含cab或者abc的项。
    因为 X(1-ba) = X - Xba。我们很容易看出,如果X中有以ca结尾的项(不妨记作Yca),那么就可以得到 Ycaba 这样的项,而这个项可以换成 Yabca 或 Y(c-1)a。这些式子也许有助于我们消掉那些不需要的项。
    这样,我们不妨设 X = (Yca + Z),其中Y和Z分别是两个式子(注意到,这样的假设是具有一般性的,任何含有以ca结尾的项的式子都能写成Yca+Z的样子)。
    看看这样乘出来的式子是什么样的:
    X(1-ba) = (Yca + Z)(1 - ba)
            = Yca + Z - Ycaba - Zba
            = Yca + Z - Y(c-1)a - Zba
            = Yca + Z - Yca + Ya - Zba
            = Z - Zba + Ya
    好了,现在我们得到一个当 X = (Yca + Z) 时,乘积的一般形式,如果能给Y和Z适当的值,使得Z - Zba + Ya = 1,那么相应的X就是我们要找的逆元了。
    我们发现,要想把Zba消掉,Ya就应该也以ba结尾。看到这里,结果已经很明显了,令Y=b,Z=1,则 Z - Zba + Ya = 1 - ba + ba = 1。
    这就是说,我们已经发现,当 X = (bca + 1) 时,X(1-ba)=1。这样的X就是1-ba的左逆元了。
    证明X是右逆元的工作是简单的,和前面这段推导一样,只需利用等式abc = c-1就可以了。
    
    写在答题纸上的证明只不过是后面那小小的一段:
    (bca+1)(1-ba) = bca+1-bcaba-ba
                  = bca+1-b(c-1)a-ba
                  = bca+1-bca+ba-ba
                  = 1
    (1-ba)(bca+1) = bca-babca+1-ba
                  = bca-b(c-1)a+1-ba
                  = bca-bca+ba+1-ba
                  = 1

    而寻找bca+1的过程才是解题的关键。

    总结一下我们的思路:
    1、我们得到一些已知条件,需要找到一个未知的、满足某种特定条件的元素d。
    2、整理出我们可以使用的条件和不可以使用的条件(在抽象代数里要特别注意“不可以使用的条件”。因为抽象代数里常常使用以往算术运算中的符号,使人容易不自觉地使用一些在实数域上成立,但在其它代数系统上未必成立的性质和原理)。
    3、找到一些重要的等式,把它们变形为容易利用的形式(通常一边是一个单项,这样才方便在等式中代换)。
    4、写出待求元素的一般形式,考虑如何在其中利用我们在第3步找出的等式。
    5、根据推导的结果,确定待求元素的具体形式。
    6、证明结果的正确性。
    
    抽象代数中许多构造性证明都可以按这一思路进行。
    从这里也可以看出,虽然抽象代数中绝大多数题都是证明题,但在大多数情况下,观察、分析和试探仍然是解决问题的关键所在。
    
    (转载请注明出处:计算机科学论坛 http://www.ieee.org.cn


[此贴子已经被作者于2006-5-26 0:37:52编辑过]

--  作者:DavidPotter
--  发布时间:5/25/2006 10:16:00 PM

--  
顶一个
--  作者:hello_angel
--  发布时间:5/26/2006 2:20:00 PM

--  
我还以为是版主你写的!原来牛人还是多啊!
--  作者:Logician
--  发布时间:5/26/2006 3:24:00 PM

--  
本来就是我写的啊。
--  作者:hello_angel
--  发布时间:5/26/2006 7:45:00 PM

--  
那不好意思了,我看错了,我看到"by Xiao Xinpan"以为就是转的.偶是新人,刚来贵地,人生地不熟请版主原谅!
--  作者:Logician
--  发布时间:5/26/2006 8:00:00 PM

--  
呵呵。那是我名字的拼音而已。:)
欢迎你来常来这里转转,也希望大家能多多交流经验和资源。:)
--  作者:pkucyh
--  发布时间:5/27/2006 12:52:00 PM

--  
好,不错

--  作者:cantonese00
--  发布时间:5/28/2006 3:42:00 PM

--  
学习中...
^_^ .  。 o  0
--  作者:stywt
--  发布时间:6/4/2006 11:44:00 AM

--  
楼主,牛人! 学习中..
--  作者:DavidPotter
--  发布时间:6/4/2006 12:01:00 PM

--  
我离散这部分学的最差,好好学习!
--  作者:guangye1358
--  发布时间:6/7/2006 12:51:00 AM

--  
顶,大大的顶,不错的!
--  作者:Supremgoooo
--  发布时间:9/3/2006 6:56:00 PM

--  
"寻找bca+1",看似简单,实际上是一个很难办的事。。。。

顶!


--  作者:lionx
--  发布时间:9/4/2006 9:17:00 PM

--  
不错!顶
--  作者:borlong
--  发布时间:9/19/2006 4:17:00 PM

--  
楼主的“图论”有何心得,可否与我 506577965 分享1下呢?呵呵。。
--  作者:borlong
--  发布时间:9/19/2006 4:19:00 PM

--  
楼主可否与我  506577965 探讨 图论 学习心得呢?呵呵。。
--  作者:zhaojianguo
--  发布时间:9/21/2006 4:37:00 PM

--  
感谢楼主
--  作者:carmo
--  发布时间:5/8/2007 10:54:00 PM

--  
ucsd的mathclub里有一个很有意思的考虑方法:

How is the expression 1 + bxa motivated?

from
(1 - ab)^(-1) = 1 + ab + abab + ababab + ...
and
(1 - ba)^(-1) = 1 + ba + baba + bababa + ...
so
b(1 - ab)^(-1)a = ba + baba + bababa + ... = (1 - ba)^(-1) - 1

hence 1 + bxa.  

Note: This is for motivating an expression for inverse only; it is not a valid proof unless I check by multiplying 1 + bxa with 1 - ba.


--  作者:蝶影
--  发布时间:5/11/2007 10:36:00 AM

--  
好好好,多发一点这样的帖吧~最近看代数结构看得我郁闷....
--  作者:fishyuze
--  发布时间:5/13/2007 11:28:00 AM

--  
Admire啊~~~
--  作者:人者神归
--  发布时间:5/15/2007 8:58:00 PM

--  
希望斑竹+偶QQ:765471710
本人报考08年PIUCS
望指教!
谢谢。。。
--  作者:wf1136
--  发布时间:5/21/2007 7:37:00 PM

--  
顶!希望楼主经常发这种好贴。
--  作者:skyleafBEIDA
--  发布时间:9/26/2007 12:44:00 AM

--  
感谢楼主!xiaoxinpan的答案大家几乎都在用,感谢啦^_^
W 3 C h i n a ( since 2003 ) 旗 下 站 点
苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
233.887ms