| 【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】    %编写目标函数      function[sol,eval]=fitness(sol,options)        x=sol(1);        eval=x+10*sin(5*x)+7*cos(4*x);    %把上述函数存储为fitness.m文件并放在工作目录下     initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10    [x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...      [0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代 运算借过为:x =    7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在-5<=Xi<=5,i=1,2区间内,求解        f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】    %源函数的matlab代码       function [eval]=f(sol)         numv=size(sol,2);         x=sol(1:numv);         eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;   %适应度函数的matlab代码       function [sol,eval]=fitness(sol,options)         numv=size(sol,2)-1;         x=sol(1:numv);         eval=f(x);         eval=-eval;   %遗传算法的matlab代码       bounds=ones(2,1)*[-5 5];       [p,endPop,bestSols,trace]=ga(bounds,'fitness') 注:前两个文件存储为m文件并放在工作目录下,运行结果为    p =    0.0000 -0.0000 0.0055 大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:  fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9]) evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。  
 阅读全文(15007) | 回复(5) | 编辑 | 精华
 
 |